Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 342: 123060, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048869

RESUMO

Microplastics (MPs) are ubiquitous pollutants in marine environments. Among the many detrimental consequences of microplastic pollution, its consumption by marine biota is of particular relevance for human health, due to exposure through the food web. Long-term time-series biotic samples are overlooked sources of information for microplastics research. These collections are extremely valuable for the detection and monitoring of changes in marine environments. However, there are very few long-term studies (>10 years) of the uptake of microplastics by biota. Here, we used Dove Time Series planktonic samples (from 1971 to 2020) to assess the presence and prevalence of microplastics in the English North Sea coast over time. Fish and brachyuran larvae were selected due to their commercial importance and consequent implications for human health. A custom enzymatic digestion method was used to extract microplastics for FTIR-ATR polymer identification. An increasing cumulative trend in MP ingestion was identified. Cellophane and polyethylene terephthalate were the polymer types found most frequently in both taxa. Although a total higher microplastics uptake was observed in fish, consumption was not significantly different between taxa over time. Equally, results were not clearly related to microplastics shape or polymer type. This work did not find significant long-term evidence on the increasing uptake of microplastic particles by zooplankton over time. However, the results of this report identified additives, plasticisers, and other more complex and hazardous compounds that should not be released to the environment (e.g., bis-(2-hydroxyethyl) dimerate, propylene glycol ricinoleate) inside marine biota. The study detailed herein provides a case study for the use of long-term time-series in providing accurate assessments of microplastic pollution in marine biota.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Plásticos , Larva , Monitoramento Ambiental/métodos , Mar do Norte , Poluentes Químicos da Água/análise , Peixes
2.
Sci Total Environ ; 898: 165505, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451457

RESUMO

Plankton form the base of marine food webs, making them important indicators of ecosystem status. Changes in the abundance of plankton functional groups, or lifeforms, can affect higher trophic levels and can indicate important shifts in ecosystem functioning. Here, we extend this knowledge by combining data from Continuous Plankton Recorder and fixed-point stations to provide the most comprehensive analysis of plankton time-series for the North-East Atlantic and North-West European shelf to date. We analysed 24 phytoplankton and zooplankton datasets from 15 research institutions to map 60-year abundance trends for 8 planktonic lifeforms. Most lifeforms decreased in abundance (e.g. dinoflagellates: -5 %, holoplankton: -7 % decade-1), except for meroplankton, which increased 12 % decade-1, reflecting widespread changes in large-scale and localised processes. K-means clustering of assessment units according to abundance trends revealed largely opposing trend direction between shelf and oceanic regions for most lifeforms, with North Sea areas characterised by increasing coastal abundance, while abundance decreased in North-East Atlantic areas. Individual taxa comprising each phytoplankton lifeform exhibited similar abundance trends, whereas taxa grouped within zooplankton lifeforms were more variable. These regional contrasts are counterintuitive, since the North Sea which has undergone major warming, changes in nutrients, and past fisheries perturbation has changed far less, from phytoplankton to fish larvae, as compared to the more slowly warming North-East Atlantic with lower nutrient supply and fishing pressure. This more remote oceanic region has shown a major and worrying decline in the traditional food web. Although the causal mechanisms remain unclear, declining abundance of key planktonic lifeforms in the North-East Atlantic, including diatoms and copepods, are a cause of major concern for the future of food webs and should provide a red flag to politicians and policymakers about the prioritisation of future management and adaptation measures required to ensure future sustainable use of the marine ecosystem.


Assuntos
Ecossistema , Plâncton , Animais , Mar do Norte , Cadeia Alimentar , Fitoplâncton , Zooplâncton , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...